Structural and magnetic characterization of batch-fabricated nickel encapsulated multi-walled carbon nanotubes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 Nanotechnology 22 275713
(http://iopscience.iop.org/0957-4484/22/27/275713)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 158.109.59.159
The article was downloaded on 10/06/2011 at 13:22

Please note that terms and conditions apply.
Structural and magnetic characterization of batch-fabricated nickel encapsulated multi-walled carbon nanotubes

M A Zeeshan¹, K Shou¹, S Pané¹, E Pellicer², J Sort³, K M Sivaraman¹, M D Baró² and B J Nelson¹

¹ Institute of Robotics and Intelligent Systems, ETH Zürich, CH-8092, Switzerland
² Departament de Física, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193Bellaterra, Spain
³ Institució Catalana de Recerca i Estudis Avançats and Departament de Física, Facultat de
Ciències, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain

E-mail: vidalp@ethz.ch

Received 15 March 2011, in final form 19 April 2011
Published 24 May 2011
Online at stacks.iop.org/Nano/22/275713

Abstract
We report on the growth and fabrication of Ni-filled multi-walled carbon nanotubes (Ni-MWNTs) with an average diameter of 115 nm and variable length of 400 nm–1 μm. The Ni-MWNTs were grown using template-assisted electrodeposition and low pressure chemical vapor deposition (LPCVD) techniques. Anodized alumina oxide (AAO) templates were fabricated on Si using a current controlled process. This was followed by the electrodeposition of Ni nanowires (NWs) using galvanostatic pulsed current (PC) electrodeposition. Ni NWs served as the catalyst to grow Ni-MWNTs in an atmosphere of H2/C2H2 at a temperature of 700 °C. Time dependent depositions were carried out to understand the diffusion and growth mechanism of Ni-MWNTs. Characterization was carried out using scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), Raman spectroscopy and energy dispersive x-ray spectroscopy (EDX). TEM analysis revealed that the Ni nanowires possess a fcc structure. To understand the effects of the electrodeposition parameters, and also the effects of the high temperatures encountered during MWNT growth on the magnetic properties of the Ni-MWNTs, vibrating sample magnetometer (VSM) measurements were performed. The template-based fabrication method is repeatable, efficient, enables batch fabrication and provides good control on the dimensions of the Ni-MWNTs.

Online supplementary data available from stacks.iop.org/Nano/22/275713/mmedia

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Major advances in nanotechnology and drug design will enable, in the near future, the fabrication of tiny biomedical devices that are able to perform surgery and drug delivery in remote locations of the human body. The use of minimally invasive, nanometer-sized medical platforms will offer several advantages over classical medicine. Patients will benefit from fewer side effects of systemic drug administration, shorter recovery times after surgeries, and reduced post-operative pain. Additionally, such platforms would enable earlier disease diagnosis. With their large surface-area-to-volume ratio, tunable physical properties, and their ability to be functionalized with various molecules, nanostructured materials have emerged as promising candidates for drug delivery systems. Specifically, the use of magnetic nanomaterials, such as nanoparticles, nanowires (NWs) and nanodots, has been proposed because they can be guided wirelessly by using external magnetic fields [1]. Among the widely different geometries, magnetic NWs are of great advantage because they possess high magnetic moments, which in turn, favor their wireless actuation [2].
Several strategies can be used to chemically functionalize ferromagnetic NWs. The simplest approach consists of binding molecules directly on the ferromagnetic NWs surface. Tanase et al. [3] show the magnetic manipulation of nickel NWs functionalized with luminescent porphyrins. To increase their functionality, NWs consisting of segments of different materials can also be synthesized. Due to the specific surface chemistry of each segment, several molecules can be selectively linked along the NW [4]. Another means of promoting the attachment of chemical species is by coating the NW body with a shell of a polymeric [5] or carbonaceous material. Carbon capsules, such as fullerenes or carbon nanotubes (CNTs), are particularly attractive for drug delivery purposes since there is a broad range of chemical methods available to exohedrally functionalize them [6–8]. Also, carbon shells serve as protective coatings on ferromagnetic NWs, minimizing their magnetic coupling and agglomeration.

Many approaches have been adopted to produce hybrid nanostructures of CNTs containing ferromagnetic nanostructures in their core. Methods of filling CNTs with nanoparticles [9] or with precursor salts that can eventually produce nanoparticles [10, 11] have been reported. These methods suffer from some drawbacks, such as low yield of filled CNTs, deposition of metallic material on the outer surface of CNTs, and limitations imposed by capillary forces [12]. The formation and filling of CNTs can also occur simultaneously through the pyrolysis of aerosols of organometallic compounds; metalloccenes can serve as a source of both the carbon shell and the magnetic core [13]. However, pyrolysis of aerosols leads to a partial and discontinuous filling of the CNTs [14]. A more convenient method of producing magnetic carbon-based shells is by template-assisted chemical vapor deposition (CVD) [15].

Porous anodized alumina oxide (AAO) templates are widely used in the fabrication of nanostructures due to the tunability of their pore dimensions [16]. AAO templates can also function as catalysts for CNT deposition [17]. Therefore, metal-filled CNTs can be grown within the template, either before or after the deposition of ferromagnetic material inside the pores. Gao et al. [18] show the synthesis of CNTs by pyrolysis of polyaniline in AAO templates followed by the electrodeposition of iron, nickel, and cobalt. However this approach has the drawback that the low wettability and the roughness of the inner wall of CNTs leads to a discontinuous filling [12]. To achieve continuous filling, ferromagnetic NWs can be used as catalysts around which CNTs can be synthesized. The NWs can be synthesized in AAO templates using electroless deposition [19] or electrodeposition [16]. A limited amount of previous work related to CNT formation around electrodeposited magnetic nanowires has been reported. Liu et al. showed the production of Fe NWs encapsulated in shells of amorphous carbon [12]. In their work, a poor graphitization on the Fe NWs surface was observed. Recently, electrodeposited Ni NWs have been coated by graphene [20], although in this work, the AAO template is removed before the deposition of carbon. Furthermore, nickel is selectively etched away in order to study the electrical conductivity of the resultant CNT.

![Figure 1](image)

Figure 1. Schematic of the synthesis process of Ni-filled CNTs. (a) Multi-layer metal evaporation onto silicon substrate. (b) AAO template after anodization in oxalic acid. (c) Pore widening and barrier layer thinning. (d) Galvanostatic pulse current (PC) electrodeposition of Ni NWs inside AAO. (e) Ni-filled CNTs grown under LPCVD at 700 °C.

In this paper, a process to produce a high yield of electrodeposited Ni NWs coated with CNTs is presented. First, a one-step anodization of aluminum (Al) evaporated on silicon is performed. Although the anodization process has been widely studied for bulk Al sheets, fabricating AAO onto silicon substrates remains a topic of research [21]. The main challenge resides in the limited thickness of the deposited Al on the silicon. There are some studies of anodized sputtered and evaporated aluminum in the literature [21, 22]. In this work, results on the anodized Al on silicon substrates with an interlayer of gold are additionally presented. After the anodization step, electrodeposition of nickel NWs into the porous AAO template at different current densities is performed. Subsequently, CNTs are grown by low pressure chemical vapor deposition (LPCVD) using a mixture of acetylene and hydrogen. Time and temperature studies were carried out in order to understand the growth and diffusion process of carbon nanotubes with a ferromagnetic core. Structural and magnetic characterization of the Ni NWs and the nickel-filled carbon shells are also presented.

2. Experimental description

The process flow depicted in Figure 1 describes the main steps required to produce high quality Ni-multi-walled carbon nanotubes (MWNTs).
Figure 2. Potentiostatic curve showing the anodization process of evaporated aluminum on silicon chips at 60 V and 5 °C under stirring conditions.

2.1. E-beam evaporation

The substrates consisted of 10 mm × 10 mm silicon chips (crystal orientation (111), p-type, resistivity 0.005–0.02 Ω m, prolog semiconductor) with a titanium (Ti) seed layer of 6 nm, a gold (Au) layer of 12 nm, and an aluminum (Al) layer of 1.2–2 μm successively deposited through e-beam evaporation (Edwards E306A, Edwards, UK). A 1 μm-thick silicon dioxide insulating layer was deposited on the backside by means of plasma-enhanced chemical vapor deposition (PECVD 80+, Oxford Instruments, UK) (see figure 1(a)).

2.2. Anodic alumina oxide templates (AAO)

AAO templates with a uniform and parallel porous structure (figure 1(b)) were obtained on an area of 0.5 cm² by one-step anodic oxidation of aluminum in a solution of 0.3 M oxalic acid (H₂C₂O₄, >99%, Sigma) at a constant potential of 60 V. The anodization was performed in a one-compartment two-electrode cell. Distilled water from a cryostat (F-25, Julabo, Germany) was circulated in the outer jacket of the cell to maintain the working temperature at 5 °C. A lead sheet was used as the cathode. In order to minimize both concentration and thermal gradients, a constant magnetic stirring regime of 1000 rpm was combined with continuous bubbling of N₂ through the electrolyte. After anodization, the samples were rinsed with Millipore milli-Q water. Subsequently, the specimens were kept in a 5% phosphoric acid (H₃PO₄, >98%, Sigma-Aldrich) solution for 45 min at room temperature in order to widen the pores and decrease the thickness of the barrier layer (see figure 1(c)).

2.3. Electrodeposition of Ni NWs

Electrodeposition of Ni NWs inside the porous AAO template (figure 1(d)) was carried out in a one-compartment double walled three-electrode electrochemical cell. To promote uniform filling of the pores with Ni nanowires, galvanostatic pulse current (PC) electrodeposition was performed [23, 24]. The electrolyte was a typical Nickel Watts bath containing 300 g l⁻¹ nickel sulfate heptahydrate (NiSO₄·7H₂O, >99%, Sigma), 45 g l⁻¹ of nickel chloride hexahydrate (NiCl₂·6H₂O, >98%, Sigma-Aldrich) and 45 g l⁻¹ of boric acid (H₃BO₃, >98%, Sigma) [23]. The pH was adjusted to 4.5 with a 1 M sodium hydroxide (NaOH) solution. All the depositions were carried out at a fixed temperature of 35 °C with a constant stirring rate of 200 rpm. Counter and working electrodes were connected to a programmable high performance potentiostat (Autolab PGSTAT302N, Ecochemie, The Netherlands) that was controlled by the NOVA 1.6 software. The Ni NWs were obtained by means of galvanostatic pulses at different current densities (j varied between −50 and −150 mA cm⁻²). Each pulse with a duration of tᵌᵣᵣ = 8 ms was alternated with a rest phase with a duration of tᵌᵣᵦᵣ = 600 ms, having a duty cycle tᵌᵣᵣ / (tᵌᵣᵣ + tᵌᵣᵦᵣ) of 1.3%. The tᵌᵣᵦᵣ phase was incorporated to help replenish the ion concentration at the base of the pores [24]. The number of cycles for each current density was adjusted in order to keep constant the charge density at Q = 900 mC cm⁻².
Figure 4. Potential response versus time with a fixed pulse current density of -100 mA cm^{-2}. After the pulse, a potential stabilization toward -200 mV is observed during the resting phase and corresponds to a capacitance discharge.

2.4. Low pressure chemical vapor deposition of CNTs

Carbon nanotubes were synthesized on the Ni-NWs–AAO templates (figure 1(e)) using a multi-step low pressure chemical vapor deposition process (LPCVD) operating at a base pressure of 10^{-5} mbar (PEO 603 PLC-300C, ATV Technologie GmbH, Germany). AAO templates filled with Ni NWs were rinsed thoroughly with deionized water, dried with N2 gas and were placed inside the quartz tube of the LPCVD chamber. The LPCVD system can be operated at a base pressure of 10^{-5} mbar [25]. The chamber temperature was ramped at a rate of 41 °C min^{-1} to the desired temperature (600–700 °C) and was allowed to stabilize for 3 min. After venting the chamber, H2 gas was pumped into the chamber at a rate of 3 standard liters per minute (slm). The gas was switched off after 31 s to maintain the pressure at 300 mbar. Since a native oxide is formed on the exposed surface of Ni NWs, a subsequent reducing H2 environment was maintained for 12 min in order to reduce the oxide layer and to activate the surface of the Ni NWs. The H2 was partially removed from the furnace and a mixture of H2 and 10% C2H2 in He were introduced into the chamber. H2 was pumped in for 37 s at a rate of 3 slm and C2H2 for 42 s at a rate of 0.5 slm. The final ratio of the H2:C2H2 mixture was 20:1 with a total chamber pressure of $200 \pm 5 \text{ mbar}$. Carbon was deposited around the Ni NWs by varying the deposition time from 15 to 60 min.

4

Figure 5. (a) SEM of a cross-sectional view of an AAO template filled with electrodeposited Ni NWs at -125 mA cm^{-2}. The cross-section was obtained by FIB milling. (b) SEM magnification of a FIB cross-section showing a uniform filling of pores. (c) TEM picture of Ni NWs obtained at galvanostatic pulses of -125 mA cm^{-2}. The inset shows a SAED pattern, which indicates the fcc crystalline structure of the NWs. (d) TEM picture of NWs obtained at galvanostatic pulses of -150 mA cm^{-2}.
2.5. Characterization

AAO templates were dissolved in 10 wt% NaOH at a temperature of 90 °C. This left an array of Ni nanowires coated with CNTs which was washed thoroughly using ethanol. The morphology of AAO templates, Ni NWs and Ni-filled carbon nanostructures was observed in a scanning electron microscope (SEM, Zeiss NVision 40, Carl Zeiss, Germany) equipped with a focused ion beam (FIB). FIB milling was used to observe the cross-section of AAO templates before and after the deposition of nanowires. The chemical composition of the composite nanostructures was analyzed by means of energy dispersive x-ray spectroscopy (EDAX Inc., USA). Transmission electron microscopy (TEM) was used to observe the shell structure of the CNTs (Cm12, operated at 100 kV, Jeol, Japan). Ni-MWNTs were dispersed ultrasonically in ethanol and were placed onto a Cu grid with holey carbon for carrying out TEM characterization. Raman spectra were recorded at room temperature from a WITec CRM200 confocal Raman spectroscope using a 532 nm green laser. The spectrometer is mounted with a Peltier-cooled charge coupled device (CCD) camera. The relative spectral resolution was 1 cm⁻¹. The magnetic properties of the Ni NWs embedded in the AAO templates were evaluated at room temperature using a vibrating sample magnetometer (VSM) from Oxford Instruments. Hysteresis loops were recorded both along and perpendicular to the NWs axis. From the loops, the squareness ratio and coercivity values were determined for the different current densities used in the electrodeposition of the NWs. In addition, the hysteresis loops of CNTs filled with Ni NWs, grown at the current density of −100 mA cm⁻², were measured as a function of the carbon coating time.

3. Results and discussion

3.1. AAO templates

AAO templates with a uniform and parallel porous structure are obtained by the anodic oxidation of aluminum in a solution of 0.3 M oxalic acid at a constant potential. Figure 2 shows the current density j response plotted as a function of time at 60 V. Initially, the exponential drop in j from very high values is due to the growth of a homogeneous planar oxide [26]. The initial minimum in the curve (figure 2, section (A)) and its stabilization (figure 2, section (B)) are related to the nucleation of the pores and the creation of the porous layer, respectively. The time required to achieve a stable porous AAO template in oxalic acid electrolytes has been reported to be 15–20 min [26].

In this work, the time required to achieve the stabilization of current is only around 30 s, probably due to the fact that the anodization was performed on relatively thin aluminum. The slight decrease in j observed just after 4 min (figure 2, section (C)) corresponds to a decrease in resistivity due to the depletion of Al in the interface substrate/electrolyte, and the further increase indicates the occurrence of oxygen evolution, because the electrolyte has reached the gold layer [21].

Figure 3(a) represents a typical top-view SEM image of the as-anodized aluminum layer. The pores exhibited a diameter (P) of 25–30 nm and, as expected from a one-step anodization process, were randomly distributed [24]. A subsequent chemical pore widening treatment consisted of immersing the template in 5% H₃PO₄ for 45 min at room temperature and increased P to 90–115 nm at an approximate rate of 2 nm min⁻¹ (figure 3(b)). The average pore diameter is 110 ± 10 nm being estimated with ImageJ software (see supporting information, figure S1 available at stacks.iop.org/Nano/22/275713/mmedia). The interpore distance (Ip) varied between 117 and 145 nm. The remaining barrier layer was roughly 20–30 nm thick. Therefore, no additional barrier layer thinning procedure was applied since the use of subsequent high current density during the electrodeposition supersedes the limitations [23, 24]. The pore density is around 5 × 10⁹ on an area of 0.5 cm². Figure 3(c) shows a cross-section view of the AAO templates with cylindrical pores having a depth of around 900 nm.

3.2. Pulsed current electrodeposition of Ni NWs

Pulsed current electrodeposition was performed at different current densities in order to study its influence on the structure and magnetic properties of the Ni NWs. Figure 4 shows the potential response when applying current density pulses of −100 mA cm⁻² for 8 ms. After each pulse, a rest phase (no current) was applied for 600 ms in order to replenish the
Figure 7. (a) TEM picture of a Ni-MWNTs showing full coverage of carbon around Ni NWs along with a tip formation. (b) and (c) HRTEM images of the right side and the left side of a Ni-MWNT shown in the inset of (b). In the regions shown in magnifications (b) and (c), carbon shells with sp2 hybridization are visible. (d) A HRTEM image of the inset (lower magnification view of the tip) displays an amorphous region at the tip of Ni-MWNT. Despite being uniformly coated, the Ni NWs are encapsulated by a mixture of amorphous and sp2 carbon.

electrolyte inside the pores. One can observe that the values of potential corresponding to each pulse were higher at the first cycles and lower for the last ones. This is related to the initial nucleation of nickel at the base of the pores. During the rest phase, a capacitive discharge is observed [23, 26]. FIB cross-sections were taken in order to estimate the NWs length and the degree of filling (figures 5(a) and (b)). For all conditions, uniform filling of the AAO templates was observed (see supporting information, figures S2(a) and (b) available at stacks.iop.org/Nano/22/275713/mmedia). The average length of the NWs increased with the galvanostatic pulse from 450 nm at -50 mA cm^{-2} to 680 nm at -100 mA cm^{-2} and 900 nm at -125 mA cm^{-2}, and decreased further on (500 nm at -150 mA cm^{-2}). This result can be explained, at least in part, on the basis of the dependence of cathodic current efficiency with current density on porous substrates [27]. Figures 5(c) and (d) show TEM images of Ni NWs electrodeposited at pulses of -125 mA cm^{-2} and -150 mA cm^{-2}, respectively. Enhanced hydrogen co-evolution at -150 mA cm^{-2} could be the reason for the growth of shorter Ni NWs with respect to the scenario at -125 mA cm^{-2}. In agreement with FIB observations, the diameter of the NWs is around 115 nm. However, this value is about 10% higher than the P_0 of the parent template. This is probably due to the mechanical strain exerted on the AAO pores by the growing Ni NWs. The inset of figure 5(c) shows the corresponding SAED pattern. As expected, the NWs are highly crystalline. The indexed spots match with the face-centered cubic (fcc) phase of Ni.

3.3. Effect of growth parameters on Ni-MWNTs

A series of experiments were carried out to optimize the growth parameters for the CNTs. The time and temperature dependency were investigated. Since the temperature determines the decomposition rate of the precursor and the crystalline structure of the resulting CNTs, the effect of temperature in the range of 600–700 $^\circ\text{C}$ was studied. It was observed that the catalytic growth of nanotubes started at 600 $^\circ\text{C}$, but few nanotubes were observed at this temperature. A higher density of tubes was obtained at 650 $^\circ\text{C}$. The optimal coverage of the NWs with CNTs was achieved at 700 $^\circ\text{C}$ (see supporting information, figures S3(a) and (b) available at stacks.iop.org/Nano/22/275713/mmedia). At this temperature, different deposition times (15–60 min) were applied. A uniform carbon coating could be found around the NWs for times of 15 min and more. There were no significant improvements with longer deposition times, though from TEM analysis a slight difference in interlayer spacing was found.
The interlayer spacing of Ni-MWNT was reduced when the thickness of the carbon shell was increased. Due to variations in thicknesses around the NW surface, the interlayer distance is not strictly correlated with time. However, with an increase of the C-shell thickness, the interlayer thickness is decreased. This might be related to the increase in the total interlayer interactions (such as van der Waals forces) between carbon shells causing the observed decrease in the interlayer distance. Figure 6(a) shows an SEM image of a vertical array of Ni-filled CNTs after the removal of AAO template. Ni NWs are fully encapsulated inside carbon shells. Small CNTs were also found on the surface of Ni-filled CNTs, which could be formed due to the catalytic action of residual nickel oxides and hydroxides from the electrodeposition bath. Figure 6(b) shows an EDX spectrum of Ni-filled CNTs. The EDX spectrum also confirms the filling of the Ni nanowires by carbon. In most cases, the nanotube filling was continuous and the diameter did not significantly vary. TEM observations showed that the NWs were coated by a combination of amorphous and graphitized sp² carbon. A TEM image of a Ni NW encapsulated by a MWNT is displayed in figure 7(a). The magnifications in figures 7(b) and (c) show graphitized carbon on both sides of the NW. The thickness of the shells on the right and on the left of the NW was 17.5 nm with an interlayer spacing of 0.345 nm, which corresponds to 50 shells. Amorphous carbon was also observed as shown in figure 7(d). In some cases, the Ni-filled MWNTs were found to have a sharp tip (figure 8). This extrusion phenomenon can be related to a compressive stress caused by the CNTs on the NWs’ surface, which occur at high temperature. Sun et al [28] studied the extrusion effect in carbon nanotubes encapsulating iron, iron carbide and cobalt NWs by irradiating the nanostructures with an electron beam at 600 °C. The collapse of the carbon structure started in the empty portion of the capsule and aggregated at the NW cap. When the irradiation was maintained, the narrow part of the NW was eventually severed. A similar process that occurs during the growth of the carbon shells may be the reason behind the tip thinning seen in this work. The stress exerted by the growth of successive layers of carbon can shrink the tip of the Ni NW. Figure 8(c) shows a NW with an extruded tip. The tip diameter was 24 ± 5 nm and the carbon shell diameter all along the extruded tip was around 41 nm.

Complementary Raman analyses were carried out to characterize the structure of the carbon coating in arrays of Ni-MWNTs. Figure 9 shows the Raman spectrum of Ni-MWNTs obtained at a laser excitation wavelength of 532 nm. Two main peaks can be observed in the first-order spectrum. The peaks at a Raman shift of 1342 cm⁻¹ (D band) and 1582 cm⁻¹ (G band)
Figure 10. (a) Normalized hysteresis loops corresponding to the uncoated Ni NWs grown at a galvanostatic pulse of \(j = -50 \, \text{mA cm}^{-2} \) embedded inside the pores of the AAO template, measured along and perpendicular to the nanowire axis. (b) Normalized hysteresis loops corresponding to the uncoated Ni NWs grown at \(j = -100 \, \text{mA cm}^{-2} \) embedded inside the pores of the AAO template, measured along and perpendicular to the nanowire axis. (c) Normalized hysteresis loops corresponding to the Ni NWs grown at \(j = -100 \, \text{mA cm}^{-2} \) and subsequently carbon coated using a LPCVD time of 45 min, measured along and perpendicular to the nanowire axis. (d) Dependence of the coercivity, \(H_C \), as a function of the current density, \(j \), for the uncoated Ni NWs measured along and perpendicular to the NW axis. (e) Dependence of the squareness ratio, \(M_R/M_S \), as a function of the current density, \(j \), for the uncoated Ni NWs measured along and perpendicular to the NW axis. (f) Dependence of \(H_C \) on the LPCVD time, both along and perpendicular to the NW axis direction, for Ni-MWNTs (the NiWs were electrodeposited at \(j = -100 \, \text{mA cm}^{-2} \)).

are typical of MWNTs. The former is the so-called defect-induced D band, whereas the latter is related to vibrations in all sp² carbon materials [29]. The intensity ratio of the D band to the G band is \(\frac{I_D}{I_G} = 0.84 \), indicating a low degree of graphitization.

3.4. Magnetic properties

Magnetic measurements were performed at room temperature on the Ni NWs embedded in the AAO templates. Typical hysteresis loops corresponding to the arrays of Ni NWs grown at \(j = -50 \) and \(-100 \, \text{mA cm}^{-2} \), measured both along and perpendicular to the NW axis, are shown in figures 10(a) and (b). The Ni NWs exhibit coercivity values, \(H_C \), ranging from 200 to 450 Oe when the magnetic field is applied along the NW axis and around 100–150 Oe when the field is perpendicular to the NW axis (see figure 10(d)). The tilted shape of the loops, the relatively low \(H_C \) and the ratio between the remanent and saturation magnetization, \(M_R/M_S \), values are in agreement with the results reported in the literature for polycrystalline Ni NWs with a relatively large diameter and low aspect ratios, which show incoherent magnetization reversal [30–32]. The shape of the hysteresis loops and, in particular, \(M_R/M_S \), slightly varies depending on the direction of measurement (see figure 10(e)), an effect which can be attributed to the magnetic shape anisotropy of the NWs. Dipolar inter-wire interactions can also have an influence on the overall shape of the loops, reducing both \(H_C \) and
M_R/M_S [33]. The dependence of H_C in the parallel direction (i.e. along the NW axis) as a function of the current density is linked to variations in their length. Namely, H_C increases with the length of the NWs. The highest H_C corresponds to the NWs electrodeposited at $j = -125$ mA cm$^{-2}$ (i.e., the longest ones). Such an increase in the coercive field with the length of the NWs in arrayed systems has been observed both theoretically and experimentally [33].

After coating the Ni NWs with MWNTs, no significant changes were observed in the shape of the hysteresis loops (cf. figures 10(b) and (c)). The coercivity measured along the NW axis remains around 450 Oe, even after 60 min of carbon deposition (figure 10(f)). This suggests that the process of coating the NWs with carbon does not significantly modify their microstructure. Typically, in very long NWs, the M_R/M_S values are large which could lead to aggregation of the NWs in a fluid medium in the absence of an external magnetic field. The magnetic properties of the Ni-MWNTs obtained in this work are promising for wireless manipulation through bodily fluids.

4. Conclusions

Ni-filled MWNTs have been successfully synthesized by template-assisted LPCVD. By optimizing the conditions of evaporated aluminum anodization and of CNT LPCVD, magnetic hybrid nanostructures are obtained. SEM, TEM, EDX, SAED, Raman and VSM were used to characterize the Ni NWs and the Ni-MWNTs. No significant differences in terms of crystalline structure and magnetic properties were observed between the Ni NWs and the Ni-MWNTs. Therefore, this fabrication method preserves the magnetic properties of the Ni NW core. The uniformly coated Ni NWs possess a significant amount of graphitized carbon.

Acknowledgment

We thank the FIRST lab and EMEZ of ETH Zürich for technical support. Funding for this research was conducted from the project ‘Nano-Actuators and Nano-Sensors for Medical Applications (NANOMA)’ funded by the European Commission under the seventh Framework Program (FP7). SP acknowledges a postdoctoral fellowship of the Spanish MICINN. EP is indebted with the Generalitat de Catalunya for financial support from an ICREA Academia award.

References

[33] Jain D and Wilhelm R 2007 An easy way to produce alpha-iron filled multiwalled carbon nanotubes Carbon 45 602–6
Discriminating the carboxylic groups from the total acidic sites in oxidized multi-wall carbon nanotubes by means of acid–base titration Chem. Phys. Lett. 462 256–9

